

STRIP CLADDING TECHNICAL HANDBOOK.

FLUXES AND STRIPS FOR SUBMERGED ARC AND ELECTROSLAG STRIP CLADDING

CONTENTS.

ESAB - One solution - one supplier	3
Strip cladding processes	4
Deposition rate of electroslag strip cladding	6
ESW strip cladding of valves for	8
petrochemical plants	
ESW Inconel strip cladding	9
Combinations for SAW and ESW strip cladding	10
Fluxes and strips for SAW and ESW strip cladding	12
Fluxes for SAW strip cladding	13
Fluxes for ESW strip cladding	16
Flux and strip packages	18
Strip cladding heads	19
World leader in welding and cutting	20
technology and systems.	

DISCLAIMER

Whilst all reasonable efforts have been made to ensure the accuracy of the information contained in this handbook at the time of going to press, ESAB gives no warranty with regard to its accuracy or completeness. It is the responsibility of the reader to check the accuracy of the information contained in this handbook, read product labels and equipment instructions and comply with current regulations. If the reader is in any doubt with regard to the proper use of any technology they should contact the manufacturer or obtain alternative expert advice. ESAB accepts no responsibility or liability for any injury, loss or damage incurred as a result of any use or reliance upon the information contained in this handbook.

ESAB – ONE SOLUTION, ONE SUPPLIER.

This brochure presents an overview of ESAB's product range of strip cladding consumables. ESAB can offer a complete technical solution including power sources, equipment, strips and fluxes as well as process and metallurgical know-how for strip cladding.

We supply strip electrodes and suitable fluxes for almost all demanding applications, for example for the chemical, petrochemical, nuclear and pulp and paper industries and also repair and maintenance.

Two Cladding Processes.

ESAB can offer the two most productive systems for surfacing large components which are subjected to corrosion or wear. These are submerged arc and electroslag cladding, using a strip electrode.

Both processes are characterised by a high deposition rate and low dilution. They are suitable for surfacing flat and curved objects such as heat exchangers, tubes, tube sheets and various pressure vessels. Submerged arc welding (SAW) is the more frequently used, but if higher productivity and restricted dilution rates are required, then electroslag welding (ESW) is recommended.

STRIP CLADDING PROCESSES.

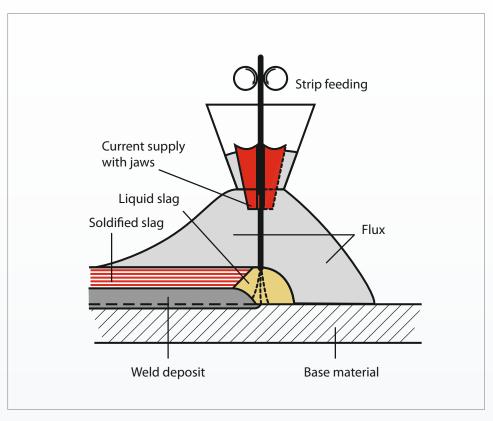


Figure 2: Submerged arc strip cladding

SAW Strip Cladding.

The well-known SAW method has been widely used with strip electrodes since the mid-1960s. A strip electrode, normally measuring 60×0.5 mm or 90×0.5 mm, is used as the (usually positive) electrode and an electric arc is formed between the strip and the workpiece. Flux is used to form a molten slag to protect the weld pool from the atmosphere and helps to form a smooth weld bead surface.

ESW Strip Cladding.

Electroslag strip cladding is a development of submerged arc strip cladding which has quickly established itself as a reliable high deposition rate process. ESW strip cladding relates to the resistance welding processes and is based on the ohmic resistance

heating of a molten electrically conductive slag. There is no arc between the strip electrode and the parent material. The heat generated by the molten slag melts the surface of the base material, and the edge of the strip electrode is submerged in the slag and flux.

The penetration achieved with ESW is less than that with for SAW because the molten slag pool is used to melt the strip and some of the parent material. The temperature of the slag pool is about 2300°C, making it necessary to water-cool the contact jaws.

ESW uses higher welding currents than SAW strip cladding so the welding heads used are more heavy duty. The following shows the features of ESW compared with the strip cladding process.

- Increased deposition rate of 60% to 80%.
- Only half of the dilution (10%–15%) from the base material due to less penetration.
- Lower arc voltage (24–26 V).

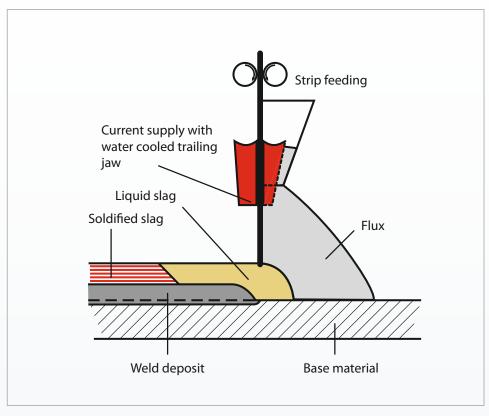


Figure 3: Electro slag strip cladding

 Higher amperage and current density (About 1000–1250 A with strips of 60 mm width, corresponding to 33–42 A/mm²). Specially developed fluxes for high productivity purposes can be welded with amperage in excess of 2000 A which

corresponds to a current density about 70 A/mm².

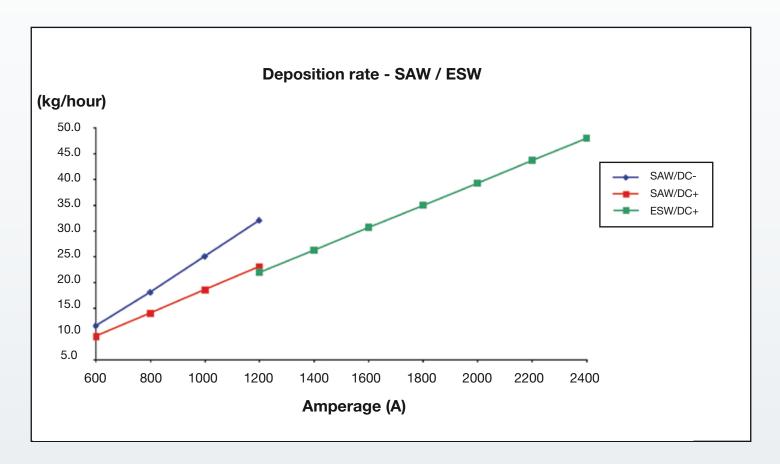
- Increased welding speed (50%–200%), resulting in a higher area coverage in m²/h.
- Comparable heat input.
- Lower flux consumption (about 0.5 kg/kg strip).
- The solidification rate of the ESW weld metal is lower, aids de-gassing and increases resistance to porosity. Oxides can rise easier out of the molten pool to the surface; resulting in a metallurgically cleaner weld metal which is less sensitive to hot cracking and corrosion.

Fluxes for EWS.

The ESW-process requires a slag pool with an ohmic resistance behaviour. In

comparison to SAW cladding the electrical conductance must be higher to avoid arc flash, which is a disturbance of the process. The composition of the welding flux influences the conductivity, the solidification range and the viscosity of the molten slag.

To increase the cladding speed at corresponding high welding currents, it is necessary to use fluxes with high electrical conductivity and low viscosity.


DEPOSITION RATE OF ELECTROSLAG STRIP CLADDING.

The electroslag strip cladding method was developed in the early seventies to increase productivity by increasing the deposition rate and decreasing the dilution compared with the SAW process.

Due to the properties of ESW often only one layer is needed to fulfill the cladding requirements and further the consumption of consumables is significantly reduced.

ESW can be advantageously used for the productive cladding of a second layer, when the two layer technology is demanded. The first layer, usually a buffer layer, can be deposited with either SAW or ESW. The unique ESAB OK Flux 10.14 is a high basicity flux used with the electroslag process, designed for singlelayer or multi-layer cladding in combination with austenitic strips at very high deposition rates using high power intensity (up to 45 cm/min with 60 x 0.5mm strip).

With the 60 x 0,5 mm strip, the most common size, welding currents up to 2300 A can be used. The difference in deposition rate between the methods is illustrated in the diagram below.

Deposition Rate Table											
Combination	OK Flux 10.05/ OK Band 347 SAW	OK Flux 10.10/ OK Band 309LNb ESW	OK Flux 10.14/ OK Band 309LNb High speed ESW								
Strip [mm]	60 x 0.5	60 x 0.5	60 x 0.5								
Welding process	SAW	ESW	ESW								
Current [A]	750	1250	2100								
Voltage [V]	26	24	25								
Travel speed [cm/min]	10	18	40								
Current density [A/mm2]	25	42	70								
Arc	yes	no	no								
Heat input [kJ/mm]	11.7	11.25	8.6								
Bead height [mm]	4.5	4.5	4.5								
Bead width [mm]	65	68	65								
Dilution [%]	18	9	18								
Number of layers	2 (Buffer OK Band 309L)	1	1								
Deposition rate [kg/hour]	14	22	51								
Flux consumption [kg/kg strip]	0.8	0.6	0.6								

CLADDING EQUIPMENT FOR AUTOMATION.

ESAB supplies various options for strip cladding operations:

- CaB 300/460/600 as carrier.
- Welding control by PEK and PLC or only sequence control by PLC for step and spiral cladding.
- Strip cladding heads for SAW and ESW.
- Compact heads for small ID objects.
- Feed motors air cooled or water cooled.
- Holders for heads providing easy set-up and adjustment for circumferential or longitudinal cladding.
- Manual or automatic height and side control (joint tracking).

ESW STRIP CLADDING OF VALVES FOR PETROCHEMICAL PLANTS.

Wherever chemical or petrochemical plants exist, pipes and valves are needed to transport fluids or gas and control flows. Over the last decade, the use of noble materials for the entire valve has shifted to the cladding of a forged or cast CMn steel load-bearing bodies with a resistant alloy. The quality of the facing varies with the valve application. In the case of valves for transporting gas, the final layer is grade 316L stainless steel, as it is only subject to corrosion, whereas a final layer of Inconel 625 is a common choice when crude oil mixed with sand is involved, causing both chemical attack and abrasion.

Consumables.

The flux/wire combinations used for ESW strip cladding with 316L composition are:

- Single layer: OK Flux 10.10/OK Band OK Band 309LMo ESW.
- Double layers: OK Flux 10.10/OK Band 309LMo ESW for the first pass and OK Flux 10.10/OK Band 316L for the second pass.

The flux/wire combination used for ESW strip cladding with final Inconel 625 composition is:

OK Flux 10.11/ OK Band NiCrMo3. This combination ensures optimum results in terms of analysis and surface appearance for both single and double layers.

ESW INCONEL STRIP CLADDING.

SAW and ESW strip cladding are two options for cladding vessels with a protective Inconel 625 layer. In the application described here, the client's specification stipulated a minimum of two layers and an Fe content of 5% maximum at the weld overlay surface and 7% maximum at 2 mm sub surface (the highest requirement within the petrochemical industry, covering both heat and corrosion). Since no overlay thickness was specified, there was the freedom to reach the final composition in the most economic way.

Both methods were trial tested for consumable selection and choice of parameters. The trial tests clearly indicated that it was not possible to meet the Fe requirements with SAW strip cladding in two layers. A third layer would have been needed, involving an extra, time-consuming fabrication step and more expensive weld metal. With ESW cladding, however, parameters could be found to fulfill the chemical requirements in two layers due to less dilution with the parent material. Welding parameters were fine-tuned and a welding procedure for the weld overlay of SA516 Gr. 70 (P1 Gr.2) was established and qualified according to ASME Sec. IX and client specification.

	ESW cladding with OK Flux 10.11 / OK Band NiCrMo3												
Trial	Trial Layer Thickness % Fe surface												
1	1st	4.9mm	9.05%										
2	1st	4.3mm	10.41%										
3	1st	4.0mm	11.91%										
	1st & 2nd	8.0mm	3.28%										
4	1st	3.1mm	11.93%										
	1st & 2nd 6.2mm 5.15%												

Chemical analyses of the ESW weld overlay (%). Inconel 625 chemistry met at 3.5mm from the fusion line, so 2.5mm sub surface.

С	Ni	Cr	Мо	Fe
0.02	59	22	8.5	4.0

Right: ESW cladding of an Inconel 625 protective layer onto a SA 516 Gr. 70 vessel for the desalination industry. Welding parameters: 1050-1180A, 24-25V, 19.8-21.9cm/min. Strip dimensions OK Band NiCrMo3: 60 x 0.5mm.

COMBINATIONS FOR SAW AND ESW STRIP CLADDING.

Alloy	Process	Layers	Flux	Strip	Strip	Weld	ling parar	neters ⁽¹⁾	
		Nr.		Layer 1 ⁽²⁾	Layer 2	А	V	cm/min	
	SAW	1	OK Flux 10.31	OK Band 7018		750	28	12	
Low alloy	SAW	2	OK Flux 10.31	OK Band 7018	OK Band 7018	750	28	12	
	SAW	2	OK Flux 10.05	OK Band 309L	OK Band 308L	750	28	13	
	ESW	1	OK Flux 10.10	OK Band 309L ESW	-	1250	24	16	
308 L	ESW	2	OK Flux 10.10	OK Band 309L ESW	OK Band 309L ESW	1250	24	16	
	SAW/ESW ⁽³⁾	2	OK Flux 10.05/10.10	OK Band 309L	OK Band 308L	1250	24	32	
	SAW/ESW ⁽³⁾	2	OK Flux 10.05/10.14	OK Band 309L	OK Band 308L	1250	24	32	
	SAW	2	OK Flux 10.05	OK Band 309L	OK Band 316L	750	28	13	
	ESW	1	OK Flux 10.10	OK Band 309LMo ESW	-	1250	25	16	
316 L	ESW	2	OK Flux 10.10	OK Band 309LMo ESW	OK Band 309LMo ESW	1250	25	16	
	SAW/ESW ⁽⁵⁾	2	OK Flux 10.05/10.10	OK Band 309L	OK Band 316L	1250	24	32	
	SAW/ESW ⁽³⁾	2	OK Flux 10.05/10.14	OK Band 309L	OK Band 316L	2000	26	35	
	SAW	2	OK Flux 10.05	OK Band 309L	OK Band 347	750	28	13	
	SAW	1	OK Flux 10.05	OK Band 309LNb	-	750	28	12	
	ESW	1	OK Flux 10.10	OK Band 309LNb ESW	-	1250	25	16	
0.47	ESW			OK Band 309LNb ESW	OK Band 309LNb ESW	1250	24	16	
347	ESW	1	OK Flux 10.14	OK Band 309LNb	-	2300	24	40	
	ESW	1	OK Flux 10.14	OK Band 309LNb ⁽⁴⁾	-	2300	24	30	
	SAW/ESW ⁽⁵⁾	2	OK Flux 10.05/10.10	OK Band 309L	OK Band 347	1250	24	18	
	SAW/ESW ⁽⁵⁾	2	OK Flux 10.05/10.14	OK Band 309L	OK Band 347	2000	26	35	
2209	SAW	2	OK Flux 10.05	OK Band 2209	OK Band 2209	750	28	12	
	SAW	3	OK Flux 10.05	OK Band 385	OK Band 385	750	28	12	
904L	ESW	1	OK Flux 10.11	OK Band 385		1250	24	18	
	ESW	2	OK Flux 10.11	OK Band 385	OK Band 385	1250	24	18	
310 MoL	ESW		OK Flux 10.10	OK Band 310MoL	OK Band 310MoL	1250	25	18	
410 NiMo	SAW	3	OK Flux 10.07	OK Band 430	OK Band 430 ⁽⁶⁾	770	25	22	
Alley 00	SAW	2	OK Flux 10.16/10.17	OK Band NiCr3	OK Band NiCr3	750	28	12	
Alloy 82	ESW	2	OK Flux 10.11	OK Band NiCr3	OK Band NiCr3	1200	24	25	
	SAW	2	OK Flux 10.16/10.17	OK Band NiCrMo3	OK Band NiCrMo3	750	27	13	
Alloy 625	SAW	3	OK Flux 10.16/10.17	OK Band NiCrMo3	OK Band NiCrMo3 ⁽⁶⁾	750	27	13	
	ESW	2	OK Flux 10.11	OK Band NiCrMo3	OK Band NiCrMo3	1200	24	25	
Manal	SAW	2	OK Flux 10.18	OK Band NiCu7	OK Band NiCu7	750	29	14	
Monel	SAW	3	OK Flux 10.18	OK Band NiCu7	OK Band NiCu7 ⁽⁶⁾	750	29	14	

1) Strip dimension 60x0.5 if no other information is given.

2) Buffer layer if more than one layer is welded.

3) Results for second layer (Buffer layer cladded by SAW 750A, 28V, 20 cm/min)

4) Strip dimension 90x0.5 mm

5) Results for second layer (Buffer layer cladded by SAW 750A, 28V, 14 cm/min)

6) Second and third layer

7) For each layer

				Chemical	comp	oosition	(%)		FN			Deposition rate			
С	Mn	Si	Cr	Ni	Мо	Nb+Ta	N	Other	WRC 92	Overlay thickness (mm)	Typical base material	(kg/h)	(m²/h) ⁽⁷⁾		
0.07	0.15	0.4	0.04	0.06	0.5	-	-	Cu=0.02		3.9	CMn	14	0.43		
0.07	0.09	0.34	0.04	0.06	0.6	-	-	Cu=0.02		7.0	CMn	14	0.43		
0.02	1.0	0.6	19.0	10.5	-	-	0.03	-	~6	8.5	2.25Cr1Mo	14	0.43		
0.03	1.2	0.4	19.0	10.0	-	-	0.05	-	~4	4.5	2.25Cr1Mo	23	0.6		
0.02	1.2	0.5	20.0	11.0	-	-	0.05	-	~7	8.6	CMn	23	0.6		
0.02	1.2	0.5	19.5	9.9	-	-	0.04		~6	6.5	CMn				
0.02	1.3	0.5	19.2	9.9	-	-	0.05	_	~6	6.5	CMn				
0.02	1.1	0.7	18.0	13.0	2.5	-	0.02	-	~7	8.5	CMn	14	0.43		
0.02	1.1	0.4	18.0	12.5	2.8	-	0.04	-	~6	4.5	2.25Cr1Mo	23	0.6		
0.02	1.3	0.5	19.0	13.0	3.0	-	0.04	-	~8	8.6	2.25Cr1Mo	23	0.6		
0.025	1.3	0.6	18.0	12.0	2.0	-	0.04	-	~3	7.5	CMn				
0.025	1.3	0.5	18.0	11.9	2.0	-	0.04	-	~3	7.0	CMn				
0.02	1.1	0.7	19.0	10.5	-	0.4	0.03	-	~8	8.2	2.25Cr1Mo	14	0.43		
0.03	1.1	0.6	19.0	10.0	-	0.4	0.04	-	~9	4.5	CMn	14	0.43		
0.03	1.3	0.5	19.0	10.0	-	0.4	0.05	-	~4	4.5	2.25Cr1Mo	23	0.6		
0.02	1.3	0.5	20.5	11.0	-	0.4	0.05	-	~9	8.6	2.25Cr1Mo	23	0.6		
0.06	1.6	0.5	19.0	10.0	-	0.6	0.02	-	~5	5.0	CMn	31	1.3		
0.04	1.7	0.4	20.0	11.0	-	0.6	0.02	-	~9	5.2	CMn	51	1.8		
0.015	1.3	0.4	19.0	11.0	-	0.5	0.04	-	~6	9.0	2.25Cr1Mo				
0.01	1.3	0.4	19.0	10.5	-	0.4	0.05	-	~7	8.0	2.25Cr1Mo				
0.02	1.1	0.8	22.0	8.0	3.0	-	0.15	-	~35	8.2	CMn	13	0.38		
0.02	1.1	0.6	19.0	24.0	4.6	-	0.06	Cu=1.3	-	12.0	CMn	14	0.43		
0.02	1.4	0.5	19.0	24.0	4.3	-	0.06	Cu=1.3	-	4.5	CMn	22	0.65		
0.02	1.4	0.5	20.0	25.0	4.5	-	0.06	Cu=1.4	-	8.6	CMn	22	0.65		
0.02	2.8	0.4	24.0	22.0	2.0	-	0.14	-	-	8.6	CMn	22	0.61		
0.05	0.15	0.6	13.0	4.0	1.0	-	-	HB=410	-	12.0	CMn	12	0.35		
0.02	3.0	0.5	20.0	Balance	-	2.5	-	Fe=3.0	-	9.0	CMn	17	0.47		
0.02	2.8	0.5	21.0	Balance	-	3.2	0.01	Fe=4.0		7.0	CMn	23	0.7		
0.01	1.1	0.2	21.0	Balance	8.0	2.8	-	Fe=4.0	-	9.0	CMn	17	0.47		
0.01	1.2	0.2	21.0	Balance	8.4	2.8	-	Fe=1.7		11.5	CMn	17	0.47		
0.02	0.10	0.3	21.0	Balance	8.0	3.2	-	Fe=4.0	-	7.0	CMn	23	0.7		
0.015	3.2	1.1	-	Balance	-	-	-	Cu=26.0Fe=6.5Ti=0.3		8.0	CMn	14	0.44		
0.013	3.5	1.1	-	Balance	-	-	-	Cu=28.0Fe=2.4Ti=0.31		11.5	CMn	14	0.44		

FLUXES AND STRIPS FOR SAW AND ESW STRIP CLADDING.

	FLUX																	
		EN ISO	14174					D	escript	ion								
S	AW																	
OK Flu	ux 10.05	S A AAS 2E	3 56 34 D0	C		Stand	ard flux	for strip	o claddin	g with a	lusteniti	c strips.						
OK Flu	ux 10.07	S A GS 3 N	i4 Mo1 D0	0	F	or claddi	ng with	17Cr-st	rip produ	icing 14	Cr 4Ni	1Mo overlay.						
OK Flu	ux 10.16	S A FB 2 S	55 43 DC			For st	rip clad	lding an	d joining	with Ni-	-base m	naterials						
OK Flu	ux 10.17	S A FB 2B	57 24 DC	;		Fo	r strip c	ladding	with with	n Ni-bas	se mate	rials.						
OK Flu	ux 10.18	S A CS 2B	58 13 DC	;	For st	trip clado	ling with	n Monel	type of s	trips pr	imarily \	with NiCu7-strip.						
OK Flu	ux 10.31	S A CS 3	Mo1 DC			For s	strip cla	dding w	ith unallc	yed CN	In-steel	strips.						
OK Flu	ıx 10.92	SACS2	57 53 DC			For	strip cla	adding a	and joinir	ng of sta	ainless s	teels.						
E	SW																	
OK Flu	ux 10.10	ES A FB 2E	56 44 D0	C Stand	Standard ES cladding flux for austenitic stainless strips. Suitable for ferritic strips als								rips also.					
OK Flu	Flux 10.11 ES A FB 2B 56 44 DC				For ES high speed cladding with stainless and Ni-base strips.													
OK Flu	ux 10.14	ES A FB 2B	56 44 D	0	For very high speed ES cladding with austenitic stainless strips.								For very high speed ES cladding with austenitic stainless strips					
OK Flu	ıx 10.26	ES A FB 2B 54	91 NiMo	DC	For ES cladding with 316L strip giving 316L material in one layer.													
OK Flu	ıx 10.27	ES A FB 2B 54	62 NiMc	DC For ES cladding with 309LMo ESW strip giving 317L material in one layer.								r.						
					ST	RIPS												
OK Band	EN ISO		AWS/ SFA		С	Si	Mn	Cr	Ni	Мо	Ν	others	FN(WRC 92)					
7018		Low alloy			0.1	0.1	0.5											
308L	14343-A	B 19 9 L	A5.9:	EQ308L	0.015	0.3	1.8	20.0	10.5		0.06		12					
347	14343-A	B 19 9 Nb	A5.9:	EQ347	0.02	0.4	1.8	19.5	10.0		0.06	Nb=0.5	11					
316L	14343-A	B 19 12 3 L	A5.9:	EQ316L	0.02	0.4	1.8	18.5	13.0	2.9	0.06		8					
2209	14343-A	B 22 9 3 N L	A5.9:	EQ2209	0.015	0.4	1.5	23.0	9.0	3.2	0.15		50					
309L	14343-A	B 23 12 L	A5.9:	EQ309L	0.015	0.4	1.8	23.5	13.5		0.06		13					
309LNb	14343-A	B 23 12 L Nb	A5.9:		0.02	0.3	2.1	24.0	12.5		0.06	Nb=0.8	22					
310MoL	14343-A	B 25 22 2 N L	A5.9:	(EQ310MoL)	0.02	0.2	4.5	25.0	22.0	2.1	0.13		0					
309L ESW	14343-A	B 21 11 L	A5.9:		0.015	0.2	1.8	21.0	11.5		0.06		11					
309LNb ESW	14343-A	B 22 12 L Nb	A5.9:		0.015	0.2	1.8	21.0	11.0		0.06	Nb=0.6	15					
309LMo ESW	14343-A	B 21 13 3 L	A5.9:		0.015	0.2	1.8	20.5	13.5	2.9	0.06		13					
430	14343-A	B 17	A5.9:		0.04	0.4	0.7	17.0			0.06							
NiCr3	18274	B Ni6082 (NiCr20Mn3Nb)	A5.14:	EQNiCr-3	< 0.1	0.2	3.0	20.0	≥67.0		0.05	Nb=2.5, Fe≤3.0						
NiCrMo3	18274	B Ni6625 (NiCr22Mo9Nb)	A5.14:	EQNiCr- Mo-3	< 0.1	0.1	0.3	22.0	≥58.0	9.0	0.05	Nb=4.0, Fe≤2.0						
NiCrMo7	18274	B Ni6455 (NiCr16Mo16Ti)	A5.14:	EQNiCr- Mo-7	≤ 0.01	≤0.08	≤1.0	16.0	≥56.0	16.0		Ti≤0.7,Fe≤3.0						
NiCu7	18274	B Ni4060 (NiCu30Mn3Ti)	A5.14:	EQNiCu-7	< 0.1	1.0	3.0		67.0			Cu=29,Ti=2.5, Fe≤2.0						

FLUXES FOR SAW STRIP CLADDING.

	Classifications & approvals	Typical of	chemica	l compo	sition all	weld met	al (%)						
OK Flux 10.05		с	Si	Mn	Cr	Ni	Мо	N	FN	Others			
Basicity index 1.1	EN ISO 14174 S A AAS 2B 56 34 DC												
Density	With OK Band 309L												
Density ~ 0.7 kg/dm ³	EN ISO 14343-A: B 23 12 L AWS/SFA 5.9: EQ309L												
Grain size 0.25-1.6mm	ΤÜV												
	With OK Band 308L*	*2nd layer. First layer welded with OK Band 309L											
Slag type Slightly Basic	EN ISO 14343-A: B 19 9 L AWS/SFA 5.9: EQ308L	0.02	0.6	1.0	19.0	10.5	-	0.03	6				
Polarity	With OK Band 347*	*2nd laye	er. First la	ayer weld	led with	OK Band	309L						
DC+	EN ISO 14343-A: B 19 9 Nb AWS/SFA 5.9: EQ347	0.02	0.7	1.1	19.0	10.5	-	0.03	8	Nb=0.35			
Alloy transfer	With OK Band 316L*	*2nd laye	er. First la	ayer weld	led with	OK Band	309L						
none	EN ISO 14343-A: B 19 12 3 L AWS/SFA 5.9: EQ316L	0.02	0.7	1.1	18.0	13.0	2.5	0.02	7				

Aluminate basic, agglomerated flux designed for submerged strip cladding with Cr, CrNi, CrNiMo stabilised stainless strips of the AWS EQ300 type and duplex. OK Flux 10.05 is ESAB standard flux for internal overlay welding on mild or low alloyed steel. It has good welding characteristics and gives a smooth bead appearance and easy slag removal.

	Classifications & approvals	Typical chemical composition all weld metal (%)									
OK Flux 10.07		С	Si	Mn	Cr	Ni	Мо	N	FN	Others	
Basicity index 1.0	EN ISO 14174: S A GS 3 Ni4 Mo1 DC										
Density	With OK Band 430*	*3rd laye	er cladde	d with O	KBand 4	30 0.5x6	0 mm.				
Density ~ 1.0 kg/dm³	EN ISO 14343-A: B 17	0.05	0.6	0.15	13.0	4.0	1.0			HB=410	
Grain size 0.25-1.4mm Slag type Neutral	Neutral Ni and Mo-alloying agglomerated fl metal of 14Cr-4Ni-1Mo and a hardness of 3 metal with an enhanced toughness and cra	70-420 H	B . Espe	cially suit	able for c						
Polarity DC+											

Alloy transfer Ni and Mo-alloying

	Classifications & approvals	Typical	chemica	al compos	sition all	weld me	tal (%)			
OK Flux 10.16		С	Si	Mn	Cr	Ni	Мо	N	FN	Others
Basicity index 2.4	EN ISO 14174: S A FB 2 55 43 DC									
	ΤÜV									
Density	With OK Band NiCrMo3*	*2nd laye	r on mild s	steel						
~ 1.2 kg/dm ³ Grain size 0.25-1.4mm	EN ISO 18274: B Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14: EQNiCrMo-3	0.01	0.2	1.1	21	Bal.	8	0.026		Nb+Ta=2.8 Fe=4.0
0.20	With OK Band NiCr3*	*2nd laye	r on mild s	steel						
Slag type Very High Basic	EN ISO 18274: B Ni6082 (NiCr20Mn3Nb) AWS/SFA 5.14: EQNiCr-3	0.02	0.5	3.0	20	Bal.				Nb=2.5 Fe=3.0
Polarity										

DC+

Alloy transfer Moderately

OK Flux 10.16 is an agglomerated, non-alloying flux for submerged arc welding - specially designed for welding and cladding with Ni-base alloyed wires and strips. The well balanced flux composition minimises silicon transfer from the flux to the weld metal, reducing the risk of hot cracking. OK Flux 10.16 is suitable for submerged arc strip cladding with all grades of Ni-based strips. For chemical and petrochemical plants, offshore construction, marine equipment, pressure vessels, storage tanks, etc.

manganese and silicon alloying

	Classifications & approvals	Typical weld metal chemical composition (%), DC+*										
OK Flux 10.17		С	Si	Mn	Cr	Ni	Мо	N	FN	Others		
Basicity index 2.5	EN ISO 14174: S A FB 2B 57 24 DC											
Density ~ 1.1 kg/dm ³	With OK Band NiCrMo3* *2nd layer on mild steel											
Grain size	EN 18274 : B Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14: EQNiCrMo-3	0.03	0.6	0.06	20.0	Bal.	8.0	0.04		Nb+Ta = 2.3 Fe = 3.5		
0.2-1.4mm Slag type Basic	OK Flux 10.17 is a high basic, agglomerated 10.17 is new ESAB flux for internal overlay v bead appearance and easy slag removal. Fivessels, storage tanks, etc	velding o	on mild o	r low allog	yed steel	. It has ve	ery good	welding c	haracter	istics gives a smooth		
20010	vesseis, storage tanks, etc											

Polarity DC+

Alloy transfer

Moderately silicon alloying

	Classifications & approvals	Typical o	Typical chemical composition all weld metal (%)								
OK Flux 10.18		С	Si	Mn	Cu	Ni	Ti	Fe	FN	Others	
Basicity index 1.0	EN ISO 14174: S A CS 2B 58 13 DC										
Dentil	With OK NiCu7	*3rd layer on mild steel									
Density ~ 1.2 kg/dm ³	EN ISO 18274: B Ni4060 (NiCu30Mn3Ti) AWS/SFA 5.14: EQNiCu-7	0.013	1.1	3.5	28.0	Bal.	0.31	2.4			
Grain size 0.25-1.6 mm										fotoine - The flow is	

Slag type Neutral

OK Flux 10.18 is a neutral moderately silicon alloying agglomerated flux designed for strip cladding with Monel type of strips. The flux is primarily suitable for strip cladding with OK Band NiCu7 or with CuNi30 strip uses OK Band NiCu7 as buffer layer. This flux either 60mm or 90mm x 0.5mm strips gives good welding characteristics, a smooth bead appearance and easy slag removal. For desalinaiton plants, chemical processing industry, petrochemical industry, pressure vessels and other applications.

Polarity DC+

Alloy transfer Moderately

silicon alloying

	Classifications & approvals	Typical chemical composition all weld metal (%)										
OK Flux 10.31		С	Si	Mn	Cr	Ni	Мо	Ν	FN	Others		
Basicity index 1.0	EN ISO 14174: S A CS 3 Mo1 DC											
Density	With OK Band 7018*	*1st layer on non alloy plate. The weld metal analysis performed under various welding conditions and up to 3 layers does not significantly change the deposit analysis.										
~ 1.0 kg/dm ³		0.07	0.4	0.15	0.05	0.06	0.5			H=2.7 ml/100 g HB=150		
Grain size 0.25-1.6 mm Slag type Neutral	one layer on non-alloyed plate shows that The flux gives very good weldability and e	OK Flux 10.31 is a neutral, agglomerated, slightly molybdenium alloyed flux for strip cladding with unalloyed CMn-steel strips. Weld metal in one layer on non-alloyed plate shows that the flux adds nominally about 0,4% Mo. Maximum hydrogen content is 3.0 ml/100 g of weld metal. The flux gives very good weldability and excellent slag detachability with no slag residuals. For repair and maitenance of shafts, pistons, repairing of production mistakes, buffer layers, storage tanks and others.										
Polarity DC+												
Alloy transfer Mo-alloying												

	Classifications & approvals	Typical chemical composition all weld metal (%)										
OK Flux 10.92		С	Si	Mn	Cr	Ni	Мо	N	FN	Others		
Basicity index 1.0	EN ISO 14174: S A CS 2 57 53 DC											
	TÜV											
Density	With OK Band 308L*											
~ 1.0 kg/dm ³ Grain size	EN ISO 14343-A: B 19 9 L AWS/SFA 5.9: EQ308L	0.02	1.0	0.7	20.6	9.8			12			
0.25-1.6mm	With OK Band 347*											
Slag type Neutral	EN ISO 14343-A: B 19 9 Nb AWS/SFA 5.9: EQ347	0.02	1.3	0.7	20.6	9.5			15	Nb=0.5		
Polarity	With OK Band 316L*											
DC+	EN ISO 14343-A: B 19 12 3 L AWS/SFA 5.9: EQ316L	0.02	0.9	0.7	18.5	12.3	2.8		8			
Alloy transfer												

Cr compensating

*Third layer on 2.5Cr1Mo steel OK Flux 10.92 is a neutral, agglomerated, Cr-compensating flux designed for strip cladding, butt and fillet welding of stainless and corrosion resistant steel types with AWS ER300 types of wire. Works well on DC current for single layer and multi layer welding of unlimited plate thickness. Good welding characteristics and easy slag removal. When used for strip cladding with austenitic stainless welding strips, OK Flux 10.92 gives a smooth bead appearance. For chemical and petrochemical plants, offshore construction, pressure vessels, storage tanks, chemical tankers, power generation, nuclear, pulp and paper, civil construction, transport industries etc.

FLUXES FOR ESW STRIP CLADDING.

	Classifications & approvals	Typical chemical composition all weld metal (%)												
OK Flux 10.10		С	Si	Mn	Cr	Ni	Мо	N	FN	Others				
Basicity index 4.0	EN ISO 14174: ES A FB 2B 56 44 DC													
	ΤÜV													
Density ~ 1.0 kg/dm³	With OK Band 309L ESW*	* 1st layer, welded on 2.25Cr1Mo steel												
~ 1.0 kg/dm ³	EN ISO 14343-A: B 21 11 L	0.03	0.4	1.2	19.0	10.0		0.05	4					
Grain size														
0.15-1.0mm	With OK Band 309LNb ESW*	* 1st laye	r, welded	on 2.25Cr1	Mo steel									
.	EN ISO 14343-A: B 22 12 L Nb	0.03	0.5	1.3	19.0	10.0		0.05	4	Nb=0.4				
Slag type														
Very High Basic	With OK Band 309LMo ESW*	* 1st laye	r, welded	on 2.25Cr1	Mo steel									
Polarity DC+	EN ISO 14343-A: B 21 13 3 L	0.02	0.4	1.1	18.0	12.5	2.8	0.04	6					

Alloy transfer Moderately silicon alloying

High basic, agglomerated flux designed for electroslag strip cladding with the austenitic stainless strips especially produced for electroslag process e.g. OK Band 309L ESW. It is flux for high productive strip cladding. Can be used for single or multi layer cladding. However, require special welding head and a power source of at least 1200 A.

	Classifications & approvals	Typical chemical composition all weld metal (%)										
OK Flux 10.11		С	Si	Mn	Cr	Ni	Мо	N	FN	Others		
Basicity index	EN ISO 14174: ES A FB 2B 56 44 DC											
5.4 Density	OK Band NiCrMo3*	*1st layer on mild steel										
Density ~ 1.0 kg/dm ³	EN ISO 18274: B Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14: EQNiCrMo-3	0.03	0.5	0.20	19.5	Bal.	8.0			Nb+Ta=3.2, Fe=9.0		
Grain size	OK Band NiCrMo3**	**2nd layer on mild steel										
0.2-1.0mm Slag type	EN ISO 18274: B Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14: EQNiCrMo-3	0.02	0.3	0.10	21.0	Bal.	8.1			Nb+Ta=3.2, Fe=4		
Very High Basic	High basic, agglomerated flux designed for	electrosla	ag strip o	cladding	with the s	tainless,	fully auste	enitic and	d Ni-bas	ed strips.		

Can be used for single or multi layer cladding with higher welding speed.

Polarity DC+

Alloy transfer

Moderately silicon alloying

	Classifications & approvals	Typical chemical composition all weld metal (%)										
OK Flux 10.14		С	Si	Mn	Cr	Ni	Мо	N	FN	Others		
Basicity index 4.4	EN ISO 14174: ES A FB 2B 56 44 DC											
Density	With OK Band 309LNb *	* 1st layer, welded on mild steel.										
~ 1.0 kg/dm ³	EN ISO 14343-A: B 23 12 L Nb	0.06	0.5	1.6	19.0	10.0		0.02	5	Nb=0.6		
Grain size												

0.2-1.0mm

Slag type Very High Basic High basic, agglomerated flux designed for electroslag strip cladding with the austenitic stainless strips especially strip OK Band 309LNb. It is flux for very high productive strip cladding, up to about 35 cm/min. Can be used for single or multi layer cladding. However, require water cooled welding head and a power source of at least 2400 A.

Polarity DC+

Alloy transfer Moderately silicon alloying

	Classifications & approvals	Typical chemical composition all weld metal (%), DC+*									
OK Flux 10.26		с	Si	Mn	Cr	Ni	Мо	N	FN	Others	
Basicity index 3.0	EN ISO 14174: ES A FB 2B 54 91 NiMo DC										
Density	With OK Band 316L *	*1st layer, weld on mild steel									
~ 1.2 kg/dm ³	EN ISO 14343-A: B 19 12 3 L AWS SFA: 5.9 EQ 316L	0.03	0.2	1.2	19.0	12.8	2.7	0.06	8	Cu=0.05	
Grain size 0.2-1.0 mm											
Slag type Fluoride basic	OK Flux 10.26 is high basic, agglomerated gives 316L overlay in first layer. The flux h chemical industry, marine applications, pa works, water tubes and heat exchangers.	as very goo	od weldin	ng charac	teristics	gives a sr	mooth be	ad appea	irance a	ind easy slag removal. For	
Polarity DC+	-										
Alloy transfer Cr, Ni and Mo-alloying											

	Classifications & approvals	Typical	weld me	tal chem	nical com	position ((%), DC-	+*			
OK Flux 10.27		с	Si	Mn	Cr	Ni	Мо	N	FN	Others	
Basicity index 3.1	EN ISO 14174: ES A FB 2B 54 62 NiMo DC										
Density	With OK Band 309LMo ESW *	* 1st layer	, welded o	on mild ste	el.						
~ 1.2 kg/dm ³	EN ISO 14343-A: B 21 13 3 L	0.03	0.2	1.0	18.8	13.2	3.4	0.04	8	Cu=0.08	
Grain size											


0.2-1.0mm Slag type Fluoride Basic

OK Flux 10.27 is an high basic, agglomerated Ni-, Cr- and Mo-adding flux designed for electroslag strip cladding with ESAB 309LMo ESW strips gives 317L overlay in first layer. It has a smooth bead appearance, very good welding properties and easy slag removal. Suitable for special applications like flue gas desulfurization scrubber systems chemical and petro-chemical processing equipments and pulp and paper plants, etc.

Polarity DC+

Alloy transfer Cr, Ni and Mo-alloying

FLUX AND STRIP PACKAGES.

ESAB strip electrodes are delivered in a cold rolled condition on 25 kg or 50 kg and 100 – 200 kg coils with an inner diameter of 300 mm. The standard thickness is 0.5 mm and widths normally 30, 60 or 90 mm. Other coil weight or strip dimensions are available on request.

ESAB delivers fluxes in 25 kg bags, but some types are available in 20 kg bags. Each bag has a polyethylene inlay to prevent the flux from moisture pick-up from the surrounding atmosphere. The palettes used to transport the flux bags are also protected against moisture by wrapping with shrink foil.

For a more robust package ESAB can supply fluxes in steel buckets containing 20 or 25 kg. These have a soft rubber band in the lid which makes them moisture tight.

The coils and bags are labelled with all information according to EN and AWS norms.

STRIP CLADDING HEADS.

ESAB is a traditional supplier of strip cladding heads for submerged arc and electroslag strip cladding with strip widths between 30 and 100 mm. We have customized heads for internal cladding in diameters from Ø300 mm and up. Please contact ESAB for more information about our range of cladding equipment.

A6 SAW STRIP CLADDING KIT.

- Used in combination with standard A6S Arc Master welding head.
- Provides an economical solution for surfacing with high alloyed materials such as stainless steel or nickel-based alloys.
- Choose a wider variety of parent materials and consumables.
- Stainless steel cladding is widely used in production of components where additional strength or corrosion resistance is required.
- Welding head can be fitted with electrode strips as wide as 30-100 mm (1.2-4.0 inch) and as thick as 0.5 mm (0.02 inch).

UNRIVALED SERVICE AND SUPPORT.

All ESAB products are backed by our commitment to superior customer service and support. Our skilled customer service department is prepared to quickly answer any questions, address problems, and help with the maintenance and upgrading of your machines. And our products are backed with the most comprehensive warranty in the business.

With ESAB, you can be sure you purchased a product that will meet your needs today and in the future. Product and process training is also available. Ask your ESAB sales representative or distributor for a complete ESAB solution.

For more information visit **esab.com**.

